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ABSTRACT

The increasing maturity of the Warn-on-Forecast System (WoFS) coupled with the now operational

GOES-16 satellite allows for the first time a comprehensive analysis of the relative impacts of assimilating

GOES-16 all-sky 6.2-, 6.9-, and 7.3-mm channel radiances compared to other radar and satellite observations.

The WoFS relies on cloud property retrievals such as cloud water path, which have been proven to increase

forecast skill compared to only assimilating radar data and other conventional observations. The impacts

of assimilating clear-sky radiances have also been explored and shown to provide useful information on

midtropospheric moisture content in the near-storm environment. Assimilation of all-sky radiances adds a

layer of complexity and is tested to determine its effectiveness across four events occurring in the spring and

summer of 2019. Qualitative and object-based verification of severe weather and the near-storm environment

are used to assess the impact of assimilating all-sky radiances compared to the current model configuration.

We focus our study through the entireWoFS analysis and forecasting cycle (1900–0600UTC, daily) so that the

impacts throughout the evolution of convection from initiation to large upscale growth can be assessed.

Overall, assimilating satellite data improves forecasts relative to radar-only assimilation experiments. The

retrieval method with clear-sky radiances performs best overall, but assimilating all-sky radiances does have

very positive impacts in certain conditions. In particular, all-sky radiance assimilation improved convective

initiation forecast of severe storms in several instances. This work represents an initial attempt at assimilating

all-sky radiances into the WoFS and additional research is ongoing to further improve forecast skill.

1. Introduction

Assimilation of satellite data into global numerical

weather prediction (NWP) models has led to substantial

forecast improvements during the past two decades

(e.g., Derber and Wu 1998; McNally et al. 2000, 2006;

Auligné et al. 2011; Zhu et al. 2016). As new satellites

and sensors are launched, the additional data has con-

tinued this trend in increasing forecast skill to this day.

While satellite data has proven to be a vital tool in global

NWP, its impact to high-resolution, regional NWP

systems is still being assessed. Data assimilation into

regional models such as the High-Resolution Rapid
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Refresh (HRRR) containsmany challenges not present in

global systems. The HRRR runs over a North American

domain at a 3km horizontal resolution with hourly data

assimilation cycling (Benjamin et al. 2016; Alexander et al.

2018). At these temporal and spatial resolutions, many of

the assumptions applied in global satellite data assimila-

tion, such as error correlation, data thinning, quality con-

trol and handling of outliers are not necessarily applicable

on the convection allowing domain. In particular, the poor

spatial data coverage of polar orbiting sensors, which have

the greatest impact in global models, significantly limits

their potential impact in higher resolution regionalmodels.

Data from geostationary satellites such as the Advanced

Baseline Imager (ABI) on board the GOES-R series are

much more suitable to the requirements of these systems.

The ABI samples far fewer channels than polar orbiting

hyperspectral sounders (16 versus ;1000), but the chan-

nels it does sample have important sensitivities to atmo-

spheric temperature and moisture properties and are

available at a 2km horizontal resolution every 10–15min

with a data latency on the order of a few minutes (Schmit

et al. 2005). The low data latency is very important for the

Warn-on-Forecast System (WoFS), which assimilates data

at 15min intervals (or less) over a regional domain in a

real-time fashion to generate short-term (0–6h) forecasts

of high-impact weather events (Stensrud et al. 2009, 2013;

Gallo et al. 2017; Choate et al. 2018).

In recent years, many studies have been performed to

assess the suitability of geostationary satellite products

into convection allowing models, which have shown great

promise (e.g., Szyndel et al. 2005; Vukicevic et al. 2006;

Stengel et al. 2009; Polkinghorne et al. 2010; Polkinghorne

and Vukicevic 2011; Otkin 2012a,b; Qin et al. 2013; Zou

et al. 2013, 2015; Jones et al. 2013, 2014, 2015, 2016; Zhang

et al. 2016; Minamide and Zhang 2019; Honda et al.

2018a,b; Zhang et al. 2018; Okamoto et al. 2019; F. Zhang

et al. 2019; Y. Zhang et al. 2019). One key advantage of

satellite data is its availability in regions where other

surface and radar observations are not reliably present.

Thus, many of these studies have focused on assimilating

geostationary satellite data to improve hurricane track

and intensity forecasts (e.g., Zou et al. 2015; Zhang et al.

2016; Minamide and Zhang 2019; Honda et al. 2018a,b;

F. Zhang et al. 2019). Others have focused on severe

weather prediction over land when other data sources

are not available (e.g., Zhang et al. 2018). Finally, several

studies assimilated satellite data in concert with other

high-resolution datasets such as radar reflectivity and

radial velocity to complement the advantages of each to

increase skill in high-impact weather prediction (Jones

et al. 2013, 2015, 2016, 2018; Y. Zhang et al. 2019).

Assimilation of surface-based radar reflectivity and ra-

dial velocity observations forms the basis for WoFS-like

systems (Aksoy et al. 2009, 2010; Dowell et al. 2011;

Yussouf et al. 2013, 2015; Wheatley et al. 2015; Johnson

et al. 2015; Wang and Wang 2017). However, satellite

data samples nonprecipitating clouds and environmental

conditions not readily sensed from radars. Assimilating

these data provides this information to the model analy-

sis, often improving forecasts (Jones et al. 2015, 2016).

Satellite data are also useful in providing information

on convection in the absence of radars, but a truly

successful WoFS system does require reasonable ra-

dar data coverage to reliably generate consistently

skillful forecasts.

Satellite data comes in many forms and can be assimi-

lated as radiances (brightness temperatures) or retrievals.

Each method has its advantages and disadvantages, but

both convey important environmental and cloud prop-

erties to the data assimilation system. Jones et al. (2015,

2016) assimilated cloud water path (CWP) retrievals

into the WoFS, and showed improvement in the fore-

casting of cloud properties, convective initiation, and the

near-storm environment compared to experiments that

only assimilated radar data. Similar results were obtained

by Zhang et al. (2018) through assimilating all-sky water

vapor channel radiances. Jones et al. (2018) experimented

with assimilatingGOES-13 6.95mm clear-sky water vapor

channel radiances in combination with radar and CWP

and showed that assimilating radiances did improve the

model analysis when compared against observations.

This translated to improvements in the forecasting of

rotating severe storms, but the correction of inherent

model biases caused a degradation in one case.

With the operational availability of GOES-16 data

and the increasing maturity of the WoFS, a comprehen-

sive analysis of the relative impact of CWP retrievals,

clear-sky, and all-sky radiances is necessary. However,

the ideal set of observations to assimilate remains an open

question and this work hopes to provide some answers

using several high-impact severe weather events run in

real time during spring and summer 2019. In particular,

comparing the results from assimilating retrieved cloud

properties versus all-sky radiances is necessary to deter-

mine the advantages and disadvantages of both obser-

vation types. Migliorini (2012) found that in the end, both

contain a similar information content, but their obser-

vation characteristics differ significantly, which can have

large impacts during the assimilation processes. For

example, assimilating retrievals or radiances associated

with upper-level cirrus clouds both add positive incre-

ments to frozen hydrometeor values. However, the

magnitude of these increments can vary substantially

along with the impact to specific hydrometeor variables.

Testing showed that assimilating CWP observations

had the largest impact on snow concentrations while
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assimilating radiances had the largest impact on ice con-

centrations in the same atmospheric layer (not shown).

An experiment that assimilates only radar observa-

tions will be used as a baseline from which the value of

satellite data will be assessed. Qualitative and object-

based verification of severe weather and the near-storm

environment will be used to assess which combination of

observations generates the most skillful forecasts (Skinner

et al. 2018; Jones et al. 2018). We will focus our study

through the entire WoFS analysis and forecasting cycle

(1900–0600 UTC, daily) so that the impacts throughout

the evolution of convection from initiation to large

upscale growth can be assessed.

Following the Introduction, section 2 discusses the

WoFS configuration and assimilated observations. Brief

descriptions of the severe weather events being forecasts

are provided in section 3. Section 4 outlines bias and

error for each observation type. Section 5 describes qual-

itative and quantitative comparisons of each assimilation

experiment, with conclusions following in section 6.

2. Warn-on-Forecast System (WoFS)

a. Overview

The WoFS is an ensemble data assimilation and fore-

casting system designed to generate short-term (0–6h)

forecasts of severe thunderstorm, high winds, supercell

rotation, and flash flooding. The WoFS uses an ensemble

Kalman filter (EnKF) approach to assimilate conven-

tional, radar, and satellite data on a 3km horizontal res-

olution, 51 vertical level in a regional domain (Wheatley

et al. 2015; Jones et al. 2016; Skinner et al. 2018; Yussouf

and Knopfmeier 2019). Currently (2019) the WoFS uses

a modified version the of Advanced Weather Research

and Forecasting Model (WRF-ARW), version 3.8.1

(Skamarock et al. 2008), coupled with a custom-

ized version of the Community Gridpoint Statistical

Interpolation (GSI) system that contains the forward

operators and data assimilation code (e.g., Kleist et al.

2009; Hu et al. 2016). To generate satellite radiances,

GSI uses the Community Radiative Transfer Model

(CRTM), which is a tool that translates model state

variables into simulated radiances for comparison with

observations (Weng 2007;Han et al. 2007). TheGSI-EnKF

system has been extended to include radar reflectivity and

radial velocity (Johnson et al. 2015;Wang andWang 2017),

CWP (Jones et al. 2013), dewpoint, and GOES-16 ABI

forward operators using CRTM, version 2.3, as part of

ongoing research.

All observations are assimilated using an ensemble

Kalman filter (EnKF) approach so that the flow de-

pendent covariances generated by the ensemble after

each assimilation cycle can be used in updating the

model state (Whitaker et al. 2008). The WoFS cycles at

15min intervals beginning at 1700 UTC until 0300 UTC

assimilating all available conventional, radar, and sat-

ellite observations during this period into a 36 member

ensemble. Initial and boundary conditions are provided

by an experimental 36 member HRRR ensemble

(HRRRE; Benjamin et al. 2016) using 1 h forecasts from

the 1600 UTC analysis and forecasts generated from the

first 9 members of the 1200 UTC cycle, respectively. For

2019, theWoFS uses a regional domain of 3003 300 grid

points (;900km 3 900km) nested within the HRRRE,

which is centered within the area where high-impact

weather is expected to occur on a particular day. All

ensemble members use the two-moment NSSL variable

density (NVD) cloud microphysics scheme, with ad-

justments to reduce upper-level cloud biases applied

(Ziegler 1985;Mansell et al. 2010; Jones et al. 2018). This

differs from the HRRRE, which uses the Thompson

cloud microphysics scheme for all ensemble members

(Thompson et al. 2004, 2008, 2016). During each cycle,

temperature, humidity, 3D wind, pressure, diabatic

heating, and hydrometeor variables are updated.

Ensemble spread is maintained by applying different

sets of model boundary layer physics and radiation

schemes to each member (Stensrud et al. 2000). See

Table 2 and Table 1 in Wheatley et al. (2015) and

Skinner et al. (2018), respectively, for details. Prior

adaptive inflation using the Anderson (2009) technique,

which has been extended to this system, is applied prior

to each assimilation cycle (Hu et al. 2019). An outlier

threshold of 3.25 standard deviations from the mean is

applied to all observations, similar to (Wheatley et al.

2015; Jones et al. 2018). Horizontal and vertical locali-

zations applied using the Gaspari and Cohn (1999)

method are varied as a function of observation type.

Conventional observations having the longest (460 km)

and high density radar data having the smallest (18 km)

localization length are similar to those used by Jones

et al. (2018). Clear- and all-sky radiance localization and

observation errors are derived from sensitivity testing

as well as results from Jones et al. (2015), Honda et al.

(2018b), and Y. Zhang et al. (2019). See Table 1 for a

complete listing.

b. Observations

1) CONVENTIONAL

The WoFS assimilates conventional observations (tem-

perature, dewpoint, winds, and pressure) from surface

instruments, aircraft, and radiosondes. Most conven-

tional observations are contained in hourly prepbufr

files also used by the HRRRE system and assimilated
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into the WoFS when available using a 15min time lag.

For domains that includeOklahoma (OK), OKMesonet

data are also assimilated at each cycle to compliment

other conventional observations in the prepbufr file

(McPherson et al. 2007). Observation errors for these

and all other observation types are provided in Table 1.

2) RADAR REFLECTIVITY AND RADIAL VELOCITY

Reflectivity observations are derived from the 1-km

Multi-Radar Multi-Sensor (MRMS) product created

from the WSR-88D Doppler radar network that are

objectively analyzed to a 5-km resolution (Smith et al.

2016). Vertical resolution is 0.5 km from the surface to

3 km above sea level and 1km thereafter until 10 km

above sea level. Reflectivity values between 0 and

15 dBZ are not assimilated to provide a buffer between

precipitation and nonprecipitation regions, which are

defined as 0 dBZ. Any negative reflectivity values are set

to zero during the MRMS preprocessing phase. For

clear-air reflectivity, only a single value per grid point is

assimilated and the data are further thinned to a 15km

resolution. Radial velocity observations are created

using the raw level-II WSR-88D data, which is deal-

iased, and also objectively analyzed to a 5-km resolution

(Cressman 1959). Only radial velocity observations within

150 km of a particular radar that lies near or within the

domain are used. Refer to Yussouf et al. (2013) and

Wheatley et al. (2015) for further information on the ra-

dar data assimilation characteristics used by the WoFS.

3) CLOUD WATER PATH

Cloud water path (CWP) represents the total cloud

water content of a cloud at a particular point, which can be

represented as a vertical summation of the hydrometeor

mixing ratio values within the model (Jones et al. 2013,

2016). CWP observations fromGOES-16 data are derived

using the Satellite Cloud and Radiation Property retrieval

System (SatCORPS, https://satcorps.larc.nasa.gov; Minnis

et al. 2008a,b, 2016), which is based on the cloud property

retrieval algorithms developed by Minnis et al. (2011).

Data are then reanalyzed to the 5km MRMS grid prior

to assimilation. Also, a parallax correction is applied to

cloudy (CWP . 0) pixels using the method described

by Jones et al. (2015). Finally, clear-sky observations

(CWP 5 0kgm22) are further thinned to a 15km reso-

lution to prevent dry biases from developing in the

system after multiple assimilation cycles. Positive CWP

retrievals are only assimilated during daylight hours

since the characteristics of CWP retrievals change sig-

nificantly after dark. All other observation types are

assimilated during the full cycling period. Further details

on CWP retrievals and assimilating methods can be

found in Jones et al. (2013, 2015, 2016) and Jones and

Stensrud (2015).

4) RADIANCES

The 6.2, 6.9, and 7.3mm infrared bands measured by

GOES-16 are sensitive to upper-, mid-, and low-level

atmospheric water vapor content in clear-sky regions

with peak weighting functions of;350, 450, and 625hPa

assuming a standard atmosphere. The vertical weighting

can change significantly as a function of different at-

mospheric conditions making the assignment of vertical

levels to clear-sky radiance observations challenging.

In cloud regions, all three channels sense the top of

the cloud layer, with colder brightness temperatures

(BTs) being associated with thicker and higher altitude

cloud cover.

Assimilated BT observations are obtained from the

real-time L1B radiance products. All channels are sam-

pled at a 2km horizontal resolution at a 5min temporal

resolution for theCONUSdomain. For the cloud clearing

and cloud information necessary for observation pro-

cessing, cloud top height from the L2 ACHAC product is

combined with the L1B data and analyzed to the same

5km grid as radar reflectivity and CWP for convenience.

A parallax correction is applied for cloudy radiances since

the slantwise nature of the observation between the sur-

face and the satellite results in a displacement error in the

geolocation of a cloud in satellite imagery compared to

its ground truth location (e.g., Wang and Huang 2014).

Without this correction, geolocation errors of up to

15 km for upper-level clouds would occur.

In clear-sky regions, we further thin the data to a

15 km resolution to reduce the impact of spatial cor-

relation. In addition, only the 6.2 and 7.3mm channels

are assimilated in clear-sky as both have shown a high

TABLE 1. Observation errors and localization radii for all ob-

servation types assimilated into this version of WoFS. Horizontal

localization radii vary for conventional observations being shortest

for Oklahoma Mesonet observations, and longest for sparser res-

olution instruments such as ASOS and ACARS. Vertical locali-

zation radii are given in units of scale height. For cloudy regions,

BT73 errors are double to account for larger uncertainties in these

measurements.

Observation Error H local (km) V local (SH)

Temperature 1.5 (K) 60–460 0.5

Dewpoint 2.0 (K) 60–460 0.5

U wind 1.75 (m s21) 60–460 0.5

V wind 1.75 (m s21) 60–460 0.5

Pressure 1.0 hPA 60–460 0.5

Reflectivity 7 (dBZ) 18 0.8

Radial velocity 3 (m s21) 18 0.8

CWP 0.025–0.2 (kgm22) 36 0.9

BT62 1.25 (K) 36 4.0

BT73 1.75 (K) 36 4.0
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correlation with the 6.9mm channel, strongly indicat-

ing that it would provide very little independent in-

formation to the system (Honda et al. 2018a). For

cloudy regions, the full 5 km resolution observations

are assimilated owing to the greater spatial variability

of clouds, but only the 7.3mm channel is retained.

Since both the 6.2 and 7.3mm channels are very highly

correlated in cloudy conditions (e.g., Zhang et al. 2018),

assimilating both channels would only act to assimilate

cloud features twice resulting in a cloudy bias in the model

after several assimilation cycles. Clear versus cloudy pixels

are defined by applying the L2 cloud height product to the

L1B radiance data at the corresponding time.

For both clear and cloudy radiances, the vertical level

of the observation is defined using the level of the maxi-

mum Jacobian of simulated BT at each observation,

which is calculated from the analysis background of

each ensemble member during each assimilation cycle.

For clouds, the difference between retrieved cloud top

heights and the CRTM derived value was generally less

than 630hPa. Given the large vertical localization radius

being used, this difference was not considered significant.

c. Experiment configuration

Four experiment configurations are considered by

this study (Table 2). The first, RADAR, assimilates

conventional, radar reflectivity and radial velocity ob-

servations and acts as a control experiment to assess the

overall impact of assimilating various combinations of

satellite data. The second, RADCWP, assimilatesGOES-16

CWPobservations in addition to radar and conventional

observations and closely corresponds to the spring 2019

real-time WoFS configuration. The third, CLEAR, as-

similates GOES-16 clear-sky radiances in addition to

CWP and radar similar to Jones et al. (2018). The final

experiment, ALL, replaces positive CWP observations

with all-sky BTs. Note thatALL retains CWP5 0kgm22

observations for cloud-clearing purposes. Also, no bias

adjustments are applied to the BT observations for these

experiments.

Several other configurations were tested, but none

proved more skillful than the four described above. For

radiance assimilation, both traditional (e.g., Derber and

Wu 1998; Miyoshi et al. 2010; Zhu et al. 2014) and

histogram-matching bias adjustment techniques were

applied and tested. For clear-sky observations, applica-

tion of a bias adjustment did not significantly impact the

forecasts in part owing to the relatively small sample size

for most cases. For all-sky observations, the biases are

larger and the adjustment methods did reduce them, but

the overall skill of the system when assimilating bias

adjusted BTs was also lowered. This indicates that at

least some of the bias being observed is model bias that

needs correcting by the observations. Similar results

were noted by Okamoto et al. (2019) for mesoscale

data assimilation applications. Zhang et al. (2018) and

Y. Zhang et al. (2019) also chose to forgo bias adjust-

ments for storm-scale ensemble data assimilation ex-

periments. Also, uncertainties in the representation of

upper-level clouds by the cloud microphysics schemes

can lead to large uncertainties in the actual observation

bias present (e.g., Liu and Moncrieff 2007, Otkin and

Greenwald 2008; Chaboureau and Pinty 2006).

Finally, experiments were conducted that assimilated

all-sky radiances without CWP5 0 kgm22 observations.

These experiments became dominated by excessive

upper-level cloud coverage in the analysis, substan-

tially reducing overall forecast skill. At least part of

this problem is due to an upper-level cloud bias in

the NVD cloud microphysics scheme (Jones et al.

2018). While the configuration changes used by Jones

et al. (2018) are applied here, that bias does remain

to some extent, especially when no ‘‘cloud sink’’ ob-

servations are being assimilated.

d. Verification

This research uses the object-based verification tech-

niques described by Skinner et al. (2016, 2018) and Jones

et al. (2018) to assess the quality of 0–3 h forecasts of

both radar and satellite derived objects. The object

classifications applied here fall into four rough cate-

gories: precipitation (reflectivity), supercell rotation

(updraft helicity), upper-level cloud coverage (infrared

11.2mm BT), and the clear-sky environment (6.9mm

BT). For radar reflectivity and rotation objects, their

definitions are similar to those used in Skinner et al. (2018).

In summary, observed reflectivity objects are defined by

determining locations where WoFS composite reflectivity

is greater than 45dBZ, while MRMS objects are created

using the same methods, but using a matched percentile

threshold to model climatology (;41dBZ). Observed ro-

tation objects are defined as those where 2–5km MRMS

azimuthal shear is greater than 0.004 s21. While WoFS

rotation objects are defined as those where forecast

TABLE 2. Experiment configurations evaluated by this research.

Note that ‘‘Radar’’ refers to both reflectivity and radial velocity

observations. For all-sky BT, only the 7.3mm channel is assimi-

lated. Both 6.2 and 7.3mm channels are assimilated in clear-sky

regions.

Name Radar CWP . 0 CWP 5 0 BTClear BTAll

RADAR Y N N N N

RADCWP Y Y Y N N

CLEAR Y Y Y Y N

ALL Y N Y Y Y
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2–5km updraft helicity (UH) is greater than;65m2 s22.

In both cases, objects are generated at 5-min intervals,

but rotation objects are created using a 30-min aggre-

gation of azimuthal wind shear/updraft helicity centered

on the valid forecast time, for each ensemble member

over the duration of the forecast period.

The procedure for BT112 objects closely follows the

infrared object classification method used by Jones et al.

(2018) and also builds onwork byGriffin et al. (2017a,b).

Simulated GOES-16 satellite data are generated for all

ensemble members using version 2.3 of the CRTM.

BT112 objects are defined as those where observations

and simulated BT112 are less than 216K, respectively.

These thresholds were selected to primarily emphasize

the locations of strong convection, though some upper-

level cirrus of nonconvective origin can also reach this

threshold. For this work, a second satellite derived object

classification is used where areas of dry air are defined by

warm water vapor channel BTs to quantify the impact of

assimilating satellite observations on the near-storm en-

vironment. We used the midlevel water vapor channel

(BT69) to generate these objects with thresholds of 250K

for both observations and WoFS forecasts, respectively.

These objects, labeled ‘‘dry-air objects’’ will be used to

validate midlevel moisture characteristics.

Forecast and observed objects are matched in time

and space using the total interest score (Davis et al.

2006) defined in Skinner et al. (2018). Object matching

allows matched forecast objects, unmatched forecast

objects, and unmatched observed objects to be classified

as ‘‘hits,’’ ‘‘false alarms,’’ and ‘‘misses,’’ respectively,

and contingency table–based metrics to be used to

quantify the forecast skill. Compared to radar objects,

satellite objects are generally much larger, but fewer

in number. Thus, the search radii required for object

matching is much larger, up to 400 km compared

to 40 km for radar data objects (Jones et al. 2018).

Observed and forecast BT objects are generated at

10min intervals for the duration of the forecast pe-

riod. All object-based verification is computed using a

270 3 270 gridpoint domain to remove edge artifacts

from the objective comparison.

3. Event overviews

Three severe weather events occurring in May 2019

and one event in July 2019 were selected to analyze the

impacts of various combinations of satellite data as-

similation in the WoFS. All cases generated multiple

instances of high-impact weather including tornadoes in

addition to large hail and damaging straight-line winds.

Outside this common link, the atmospheric character-

istics of each varied substantially from case to case.

Two long-track supercells developed on 17 May with

one located in southwest Nebraska (NE) between 2330

and 0130 UTC and the other located in southwest

Kansas (KS) between 0030 and 0430 UTC. Composite

radar reflectivity at 0100 18 May shows both supercells

along with nontornadic convection in central and northern

NE (Fig. 1a). Corresponding GOES-16 BT69 is shown in

Fig. 1b. At this time, the NE storm has generated multiple

tornadoes and is associated with higher reflectivity values

and a larger area of cold cloud tops compared to the

KS storm, which is still developing. Satellite data also

show a north–south oriented band of upper-level cirrus

clouds overrunning the region where the KS storm

develops (Fig. 1b).

The 22 May case consisted of a stationary cold front

extending from northeastern OK into central Missouri

(MO) with an environment favorable for tornadic

supercells existing south of this boundary. By 2300 UTC

several supercells were present in northeastern OK al-

ready having generated several tornado reports (Fig. 1c).

Additional severe convection was present in north-central

OK and northern Texas (TX). Many of these storms are

in close proximity to each other, increasing the difficulty

of forecasting individual severe weather tracks. Satellite

data also indicated developing convection along the

front in central MO, which proceeded to generate mul-

tiple severe weather reports, including tornadoes after

0030 UTC (Fig. 1d).

The 28 May case contained two tornadic supercells in

central and eastern KS with a complex of severe con-

vection located in northern MO and Iowa (IA) and

central OK by 2300 UTC (Fig. 1e). Of interest was the

large difference in the satellite presentation of the two

tornadic storms. Both generated tornadoes by 2300 UTC,

but the western KS storm has a very small cirrus shield

compared to the much larger and colder one associated

with the eastern KS storm, which also merges with the

severe convection to the northeast (Fig. 1f). The eastern

KS supercell generated a violent tornado at 2340 UTC

near Linwood, KS, and threatened the Kansas City

metropolitan area, but fortunately weakened just prior

to entering this area.

The 19 July case differed from the other three cases

in being a severe wind threat rather than a long-track

tornado threat in the northern plains. By 0000 UTC

20 July, a large complex of convection was rapidly

moving southeast through Wisconsin (WI) having

already generated numerous severe wind and a few

tornado reports in its wake (Fig. 1g). Satellite ob-

servations indicated a well-developed cirrus shield

propagating north and east of the convection while

also showing a relatively clear-sky environment ahead

of the convection (Fig. 1h).
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FIG. 1. MRMS composite reflectivity and GOES-16 BT69 for selected times for

each case. Severe weather reported and warning valid at these times are shown

(red 5 tornadoes, green 5 hail, and blue 5 wind) with severe (blue) and tornado

(red) warnings. Gray shading in left-hand figures represents MRMS 2–5km azimuthal

wind shear greater than 0.005 s21.
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4. Assimilation statistics

The innovation (or bias) and root-mean-square in-

novation (RMSI) are calculated for clear-sky 6.2 and

7.3mm clear-sky BT observations (BT62clear, BT73clear)

from the CLEAR experiment and 7.3mm all-sky BT

observations (BT73all) from ALL for each event. For

this work, innovation is defined as the observation

minus the ensemble mean prior (forecast) or posterior

(analysis). The number of observations assimilated

during each cycle are shown in Fig. 2 for BT62clear and

BT73all. The sample size for BT73clear is very similar

to the BT62clear sample size (not shown). The number of

BT62clear observations assimilated varies as a function of

the amount of cloud cover present within each domain.

For 17 and 22 May, the number gradually decreases as a

function of time through ;2200 UTC as convection

develops and matures. Afterward, some convection

moves outside the domain and the number of clear-sky

observations increases again. The 28 May case differs

due to the large amount of cloud cover present early in

the assimilation period, which leaves the domain after

2100UTC,while new convection develops after 0000UTC

reducing clear-sky observations again. The 19 July case

assimilates the greatest number of clear-sky observations

early in the assimilation cycle, decreasing at later times as

cloud cover associated with the MCS covers larger areas

of the domain. The number of BT73all observations as-

similated is greater compared to clear-sky observations

ranging from 7500 to 9500 for all cases after the initial

spin up period.

Prior bias for BT62clear observations ranges from 0 to

1K (observations are warmer than the model) (Fig. 3a).

Overall average biases are 0.53, 0.16, 0.67, and 0.29K for

17, 22, 28 May, and 19 July, respectively (Table 3). Post

assimilation biases are also generally small, being less

than 0.5K (Fig. 3a, Table 3). BT73clear biases are similar

except that the magnitude of the biases is somewhat

smaller (Fig. 3c, Table 3). BT73all observation bias

differs from the clear-sky bias in several ways (Fig. 3e).

First, the values are generally negative, indicating that

observations are generally colder than themodel. For 17

and 28 May, prior biases are on the order of 20.5K or

less, decreasing to less than20.25K out to;2200 UTC.

Afterward, biases increase somewhat due to the increase

in convective cirrus over the domain. Prior and posterior

bias for the 22May and 19 July cases are also quite small

out to 0000 UTC though biases do increase somewhat

thereafter as the upper-level cloud coverage encom-

passesmore of themodel domain. Overall, average prior

biases range between 20.7 and 21.5K for all case with

posterior biases on the order of 20.2 (Table 3).

RMSI for clear- and all-sky radiances generally shows

the same pattern as the biases for each case. For BT62clear
and BT73clear prior RMSI is less than 1.5K for both the

17 and 28 May cases (Figs. 3b,d). The prior RMSI is quite

small for the 22 May and 19 July cases and remains less

than 0.8K at all analysis times. The corresponding poste-

riorRMSI is generally below 1.0K for all cases with 19 July

again generating the lowest errors (Figs. 3b,d, Table 3). The

RMSI for BT73all is larger, as would be expected with prior

values ranging between 4 and 5K (Fig. 3f, Table 3). After

assimilation, RMSI generally decreases to 1.5K or less.

Innovation and RMSI statistics for radar reflectivity,

radial velocity, and satellite retrieved CWPobservations

are all similar to those described by Wheatley et al.

(2015) and Jones et al. (2016). As the results are very

similar, the corresponding figures from these references

are not reproduced here.

5. Experiment comparisons

a. Examples

1) 17 MAY

By 2300 UTC 17 May, the NE supercell was well

established and had already produced several tornadoes

FIG. 2. Number of (a) clear-sky 6.2mm and (b) all-sky 7.3mm observations assimilated at each cycle between

1700 and 0300 UTC. Note that the assimilation period starts at 1800 UTC for the 19 Jul case.
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and would continue to do so until 0030 UTC. Convection

farther south had yet to develop and would not generate

its first tornado report until 0030 UTC 18 May. To assess

the impact of assimilating satellite data on the forecast of

both storms, reflectivity, UH, synthetic satellite, and en-

vironmental forecasts are generated for a 0–3h period

starting at 2300 UTC. The 3-h composite reflectivity

forecast valid at 0200 UTC shows that several important

differences exist between each experiment (Fig. 4). Many

ensemble members forecast reflectivity greater than

45dBZ near the observed location of the NE supercell,

but the samemembers often overforecast storm coverage

farther north (Fig. 4a). Both RADCWP and CLEAR

generate slightly less coverage in northern NE, but

appear to move the NE supercell northeast too fast

(Figs. 4b,c). ALL generates slower storm motion than

RADAR while limiting the false alarms farther north

(Fig. 4d). The biggest difference between each experi-

ment is the treatment of the southern KS convection.

Only ALL forecasts convection in this location by

0100 UTC for a majority of the members; however,

the coverage does exceed observations to some de-

gree (Fig. 4d).

Transitioning to 0–3 h forecasts of 2–5km UH greater

than 60m2 s22, we find that all experiments generate a

long swath of greater than 50% probabilities associated

FIG. 3. Mean prior and posterior innovation (bias) (O 2 F; O 2 A) and root-mean-square innovation (RMSI) for (a),(b) clear-sky

6.2mm, (c),(d) clear-sky 7.3mm, and (e),(f) all-sky 7.3mm observations for each assimilation cycle between 1700 and 0300 UTC for

each case.
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with the NE storm, which corresponds well with the

reported tornadoes during this period and the tornado

warning present valid at 0200 UTC (Fig. 5). However,

another high-probability swath exists from northeastern

CO into southern NE that was not associated with any

tornado reports, but did generate a few hail reports.

Note that ALL generates the lowest UH probabilities

associated with this storm (Fig. 5d). ALL also forecasts

higher UH probabilities associated with the tornadic

NE storm between 2300 and 0000 UTC compared to the

other experiments. With respect to the KS storm, ALL

generates two UH swaths associated with two develop-

ing storms. The northern track of the two lines up well

with corresponding hail reports and tornado warnings

valid at 0200 UTC, but the storm motion in the model

is too fast (Figs. 4d and 5d). Similarly, a second track

is forecast farther south, which does not line up with

observations. Later forecast start times closer to con-

vective initiation correct these spatial and temporal

displacement errors.

It is important to understand why this improvement to

the prediction of the KS storms occurs in ALL, which

requires an assessment of the impacts of assimilating

all-sky radiances to the overall environment. The en-

semble mean BT69 3 h forecast valid at 0200 UTC

18 May shows several key differences in the midlevel

moisture environment and upper-level clouds (Fig. 6).

RADAR, RADCWP, and CLEAR fail to generate

convective clouds in KS at this time while also fore-

casting an area of relatively dry air present over western

KS (Figs. 6a–c). Conversely, ALL forecasts contain a

moister environment both behind and ahead of the de-

veloping convection in KS (Fig. 6d). In both cases, this

forecast represents a better match to the observed sat-

ellite observations at this time, although the coverage of

the KS convection is overforecast somewhat (Fig. 6e).

To further assess differences in the forecast environ-

ment, 30min forecasts of ensemble mean surface tem-

perature and dewpoint valid at 2330 UTC are analyzed

(Fig. 7). The impact of increased cirrus cloud coverage is

evident along the KS–CO border with ALL generating

colder temperatures compared to other experiments

(Figs. 7a,b). Also, the dryline is positioned farther west

in ALL, nearer to the location of observed convective

initiation. As a result, ALL is able to sustain analyzed

convection in this region in the more favorable envi-

ronment compared to the other experiments. Note that

CLEAR and RADAR are similar to RADCWP in this

respect (not shown). Bias (forecast–observations) and

root-mean-square error (RMSE) for the 78 surface ob-

servations in the domain show that ALL generates a

small cold and moist bias compared to RADCWP, but

the dewpoint error is reduced.

2) 22 MAY

Several differences between each experiment are

evident from 3h forecasts of reflectivity initiated at

2200 UTC (Fig. 8). During this period, convection de-

velops and becomes severe in northeastern OK and also

begins to develop farther north along the front during

the last hour of the forecast period. RADAR appears to

overforecast reflectivity coverage in northeasternOKby

0100 UTC compared to those that assimilate satellite

data. However, the other experiments place the tornadic

supercell too far east (Figs. 8b–d). Differences between

the satellite data assimilation experiments are smaller.

CLEARperforms poorlywith the northernOKconvection

with no ensemble members forecasting reflectivity greater

than 45 dBZ in this region. In ALL, some members

do forecast this convection and also accurately fore-

cast convection moving into southern OK. However,

ALL also has the fewest members forecasting the

northeastern OK supercell compared to the other

experiments (Fig. 7).

Corresponding 2–5km UH forecasts also differ signifi-

cantly between each experiment (Fig. 9). Experiments

assimilating positiveCWPdata (RADCWPandCLEAR)

perform significantly better with the severe convection in

central and eastern MO with high probability UH swaths

bettermatching the location of severeweather reports and

warnings during this time. For the northeastern OK su-

percell, these experiments forecast a narrower UH swath

than RADAR, resulting in displacement error between

warnings and forecasts by 0100 UTC. ALL differs from

TABLE 3. Prior and posterior biases and RMSI averaged overall

assimilation cycles for each case for clear-sky 6.2 and 7.3mm ob-

servations from CLEAR and 7.3mm all-sky observations

from ALL.

Prior

bias(K)

Post

bias(K)

Prior

RMSI(K)

Post

RMSI (K)

6.2 CLEAR

17 May 0.53 0.30 1.11 0.69

22 May 0.16 0.10 0.75 0.43

28 May 0.67 0.23 1.35 0.57

19 Jul 0.29 0.16 0.69 0.40

7.3 CLEAR

17 May 0.35 0.13 1.28 0.81

22 May 0.03 20.02 0.65 0.46

28 May 0.35 0.03 1.15 0.57

19 Jul 20.07 20.11 0.58 0.43

7.3 ALL-SKY

17 May 0.66 0.24 4.44 1.79

22 May 0.47 0.22 2.84 1.27

28 May 0.69 0.17 4.04 1.38

19 Jul 0.64 0.11 3.20 1.06
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the other experiments in several other ways (Fig. 9d).

First, it forecasts high probability UH swaths associated

with tornado warning in central MO whereas none of

the other experiments correctly forecast this storm. In

OK, ALL weakens the primary supercell much quicker

compared than the other experiments, but this also

corresponds with the lack of tornado reports associated

with this storm between 0000 and 0100 UTC. Finally,

over half of the ensemble members in ALL correctly

forecast a tornadic storm in far north TXwhich is mostly

missed by the other experiments.

Forecast differences also extend to the cloud fields, as

shown by ensemble mean simulated BT69 at 0100 UTC

(Fig. 10). None of the experiments accurately forecast

the westward extent of cold cloud tops associated with

the northeastern OK supercell and also poorly forecast

the central OK cloud tops, consistent with the reflectivity

forecasts described above. Assimilating CWPdata warms

cloud top temperatures compared to RADAR. ALL

restores the colder cloud tops, but does not correct the

location errors observed in northern OK. ALL does

have an improved representation of the southernOK cloud

cover compared to the other experiments. Differences in

the surface conditions are generally small for this and

the following cases (not shown).

3) 28 MAY

Forecasts for 28 May also show important differences

between each experiment. 3-h reflectivity forecasts

initiated at 2100 UTC indicate that all experiments

FIG. 4. Forecast composite reflectivity valid at 0000 UTC greater than 45 dBZ for each ensemble member for 3-h

forecasts initiated at 2100 UTC 17May for each experiment. Each ensemble member is plotted as a different color

while the dark gray color represents observed MRMS composite reflectivity at this time.
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forecast a large area of convection in northernMO and

southern IA with more isolated convection in KS and

OK, which is generally consistent with observations

(Fig. 11). There are three individual areas of interest

at this time. The first is a tornado-producing storm

in north-central KS, the second is another tornado-

producing storm in eastern KS, and finally a severe

bow echo in southeastern IA. RADAR forecasts

both the central KS and IA convection well, but only a

few ensemble members predict the eastern KS storm

(Fig. 11a). RADAR also overforecasts convection in

many areas. RADCWP and CLEAR are similar, but the

overforecasting of convection appears less significant,

though CLEAR does generate more convection in

northern OK compared to the other two (Fig. 11c).

ALL shows more significant differences for all three

areas of interest (Fig. 11d). First, it is somewhat too slow

with the central KS storm, but it does correctly forecast

the eastern KS storm. Finally, it weakens the eastern

IA convection too fast as it moves into IL.

Comparing 3-h UH probability swaths further empha-

sizes the differences between each experiment (Fig. 12).

While the reflectivity forecast for the central KS storm

from RADAR is accurate, it generates the lowest UH

FIG. 5. Probability of forecast 2–5 kmUHgreater than 60m2 s22 over a 3-h forecast initiated at 2100UTC 17May

for each experiment. Severe weather reported during this period are shown (red 5 tornadoes, green 5 hail, and

blue 5 wind) with severe (blue) and tornado (red) warnings valid at the end of the forecast time also shown.
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probabilities among the four experiments, indicating the

overall organization of this storm in RADAR is poor

(Fig. 12a). UH probabilities associated with the severe

wind threat in eastern IA and western IL are lower

than either RADCWP or CLEAR. However, RADAR

does forecast high UH probabilities associated with the

eastern KS storm early in the forecast period, but they

decrease to near zero by the time of the first tornado

report. ALL generated a more accurate prediction of

rotation in the easternKS storm than other experiments.

The quality of the ALL forecast of the eastern KS su-

percell is noteworthy as the forecast was issued over 2 h

FIG. 6. Ensemble mean BT69 valid at 0000 UTC for 3-h forecasts initiated at 2100 UTC

17 May for (a)–(d) each experiment. (e) GOES-16 BT69 at 2357 UTC is provided for

comparison.
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before genesis of a long-track, violent tornado that

impacted a major metropolitan area. Despite the

accurate prediction of the eastern KS supercell,

ALL forecast later arrival times for the central KS

storms compared with severe weather reports and

warnings (Fig. 12d). Additionally, as with RADAR,

ALL generated lower UH probabilities for the eastern

IA convection due to storm dissipation 2 h into the

forecast.

The 3-h ensemble-mean-simulated BT69 valid at

0000 UTC shows several key differences in the fore-

cast cloud characteristics of each experiment. First, the

convective cirrus associated with the central KS storm

is much smaller and warmer compared to the other

storms. This feature is forecast by every experiment, but

RADARgenerates the smallest coverage of BT69, 215K

(Fig. 13). Convective cirrus for the remainder of the

storms is generally larger and produces colder cloud

FIG. 7. Ensemble mean 2m temperature and dewpoint for (a) RADCWP and (b) ALL experiments valid at

2330 UTC. Dots represent observations from ASOS site located within the domain. Bias and RMSE statistics

between the ensemble mean and observations are provided.
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tops. ALL correctly extends these cold cloud tops

farther into northeastern KS, corresponding to the

long-track supercell, whereas the other experiments

do not have this feature.

4) 19 JULY

The forecast impacts from assimilating satellite

data are clearly evident in the July 19 case. Figure 14

shows 3-h composite reflectivity forecasts initiated

at 2300 UTC. All experiments correctly forecast a

southwest–northeast-oriented convective complex mov-

ing southeast. RADAR is the outlier and forecasts storm

motion too slow compared to observations (Fig. 14a).

Assimilating satellite data in one form or another in-

creases the propagation speed, generating more skillful

reflectivity forecasts for at least the northern half of

the convective complex (Figs. 14b–d). RADCWP and

CLEAR generated spurious convection in far northern

WI, which is not present in either RADAR or ALL.

Qualitatively, RADCWP performs best while all satellite

DA experiments show some improvement over assim-

ilating radar data only. Since the primary convective

hazard of this event was severe straight-line winds rather

than tornadoes, the 3-h forecast probability of surface

wind gusts greater than 50kt (1 kt ’ 0.51ms21) are

shown in place of the UH forecasts provided for other

cases. All experiments generate a large swath of modest-

to-high severe wind probabilities moving southeastward,

generally matching severe weather reports and warnings

during this period (Fig. 15). Assimilating satellite data

causes two important changes. First, these experiments

isolate the northern portion of the complex early and

allow it to develop more rapidly in the model. Second,

the probabilities of severe wind along the southern edge

FIG. 8. As in Fig. 4, but for 3 h reflectivity forecasts valid at 0100 UTC 23 May.
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of the convection are lower than generated byRADAR,

especially for the ALL experiment (Fig. 15d).

Differences in the thermodynamic environment

of experiments that assimilate satellite observations

can be inferred from the 3-h forecasts of simulated

BT69. Assimilating satellite data increases BT69 ahead

of the convection compared to RADAR, which indi-

cates a dryer midtroposphere (Fig. 16). Comparing

the forecast to observations indicates that this drying

may be overdone (Fig. 16e). The characteristics of the

convection itself are very similar across all experi-

ments, though forecast cloud top BT69 are somewhat

colder in the forecast compared to the observed

values.

b. Statistics and performance

While the qualitative comparisons of example fore-

casts from each case show significant differences due

to assimilating various combinations of radar and

satellite data, it is important to quantify these differ-

ences and determine the relative skill of each experi-

ment. To show these differences, performance diagrams

(Roebber 2009) relating probability of detection (POD),

false alarm ratio (FAR), critical success index (CSI),

and frequency bias for composite reflectivity, rotation

(2–5 km UH), 6.9, and 11.2mm objects, respectively

(Skinner et al. 2018; Jones et al. 2018). Figure 17 shows

1, 2, and 3 h forecast performance for each of these

FIG. 9. As in Fig. 5, but for 3 h 2–5 km UH probability forecasts valid during 2200–0100 UTC 22–23 May.
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parameters calculated overall forecasts from the 17 May

case. The overall quality of reflectivity and rotation

forecasts from all experiments is good, as evidenced by

1-h-forecast CSI values exceeding 0.45 for reflectivity

and 0.4 for UH before decreasing somewhat at later

forecast times (Figs. 17a–f). ALL generates somewhat

lower skill than RADAR or the CWP experiments out

to approximately 2h, but performs better relative to the

other experiments by the end of the forecast period. For

both reflectivity and UH, the larger increase in FAR

relative to POD is the reason for the slight decrease in

skill in the ALL experiment, which reverses by the 3-h

forecast when ALL generates a much higher POD with

little increase in FAR. This evolution is consistent with

FIG. 10. As in Fig. 6, but for 3 h ensemble mean BT69 forecasts valid at 0100 UTC 23 May.
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the example shown above where longer-term forecasts

of the southern KS storms were predicted by ALL, but

at the cost of some additional false alarms. To assess why

the 2–3h forecast skill for reflectivity andUH is superior

in the ALL experiment, the skill of the environment

(i.e., dry-air objects) and upper-level clouds are also

assessed. ALL demonstrates much improved skill of the

cloud-free environment at all forecast times, and this

improvement likely translates into improved longer-

term forecasts of convection as the relative impact of

the mesoscale environment becomes more important

than storm-scale initial conditions (Figs. 17g–i). For

upper-level clouds, the performance characteristics are

similar to reflectivity, with ALL generating increased

false alarms in the early forecast period, but maintaining

a greater POD later in the forecast period (Figs. 17j–l).

RADCWP, CLEAR, and to a lesser extent ALL,

generally outperform RADAR for both reflectivity

and UH at all forecast times, indicating that assimi-

lating satellite data in any form improves model skill.

Overall reflectivity andUH forecast skill remains high

for the 22 May case in all experiments. Reflectivity CSI

ranges from greater than 0.5 at 1 h to approximately 0.4

at 3 h (Figs. 18a–c). CSI is similar for all experiments, but

RADCWP and CLEAR are relatively unbiased in the

early forecast period whereas RADAR andALL have a

noticeable positive bias, with RADAR being the most

biased. This is consistent the spurious reflectivity fore-

casts from RADAR shown in the example described

above (Figs. 8a,d). UH forecasts at 1 h also show a

similar pattern, but RADAR and ALL perform better

than RADCWP and CLEAR by the 2 and 3h forecast

periods (Figs. 18d–f). This evolution indicates that as-

similating CWP modifies the environment to inhibit

FIG. 11. As in Fig. 4, but for 3 h reflectivity forecasts valid at 0000 UTC 29 May.

1846 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/5/1829/4928277/m
w

rd190379.pdf by N
O

AA C
entral Library user on 11 August 2020



development of rotating storms as the forecast time in-

creases. Note that reflectivity skill does not show this dif-

ference. From the environmental perspective only a few,

large dry-air objects were defined; thus, overall skill was

very good for all experiments (Figs. 18g–i). Differences in

false alarms are due to ALL generating 2–3 extra objects

compared to the other experiments. Finally, ALL per-

forms much better with upper-level cirrus out to 2h, pri-

marily through the improved forecast of the southern OK

convection (Figs. 18j–l).

On 28 May, the differences between each experiment

are generally small for all forecast parameters, but also

remain mostly stable throughout the 3h forecast period

with only small decreases as a function of time (Fig. 19).

For reflectivity andUH, CLEARgenerally performs best

followed by RADCWP and ALL, with RADAR having

the lowest CSI. Satellite data assimilation also improves

forecasts of dry-air and upper-level cloud objects to some

extent, with CLEAR again being the best performer

overall (Figs. 19g–l). These statistics do not reflect the

improved prediction of the eastern KS supercell in ALL

as the large number of nontornadic storms in northern

MO masks the contribution from higher-impact events.

This masking of high-impact events is a limitation of bulk

verification measures and illustrates the importance of

complementing them with subjective analyses.

In the 19 July case, the impact of assimilating satellite

observations is very evident in reflectivity forecast skill.

FIG. 12. As in Fig. 5, but for 3 h 2–5 km UH probability forecasts valid during 2100–0000 UTC 28–29 May.

MAY 2020 JONE S ET AL . 1847

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/5/1829/4928277/m
w

rd190379.pdf by N
O

AA C
entral Library user on 11 August 2020



Due to the faster motion of convection in these experi-

ments, FAR is significantly reduced, with the magnitude

of the difference increasing at later forecast times

(Figs. 20a–c). For UH, satellite data assimilation clearly

improves skill in the early forecast period, but this dif-

ference decreases at later forecast times (Figs. 20d–f).

Note that object-based verification of wind-gust fore-

casts is not possible at this time owing to lack of an

acceptable verification dataset. The number of satellite

objects is generally small since this case was character-

ized by one large area of convection and another large

area of cloud-free conditions for most of its duration.

Still, some differences are evident. Satellite data assim-

ilation improved dry-air object skill for the 0–2h time

period (Figs. 20g,h), while it performed worse than

RADAR for upper-level cloud forecasts (Figs. 20j–l).

FIG. 13. As in Fig. 6, but for 3 h ensemble mean BT69 forecasts valid at 0000 UTC 29 May.
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As with other cases, there appears to be a positive

upper-level cloud bias generated in the model after re-

peated assimilation of these cloud features. Assimilation

of all-sky radiances in particular worsens this bias.

Future research efforts will focus on methods to reduce

these cloud biases introduced through satellite data as-

similation while maintaining themany positive elements

of assimilating these data.

To assess overall performance, skill scores are calcu-

lated across all experiments over each forecast period

for object types. Figure 21 indicates the best and worst

experiment defined by ensemble mean CSI at 30min

forecast intervals out to 3h (180min) for each variable.

RADAR is generally the poorest performer for all ob-

ject types with the exception of 30–60min BT69 and

180min BT112 forecasts. Satellite data assimilation ex-

periments perform well across all object types with

CLEAR performing best for reflectivity out to 90min

andBT112 at all forecast times whileALL performs best

for BT69 at all forecast times and reflectivity forecasts

after 120min. Differences in rotation forecasts are gen-

erally smaller, with both CLEAR and RADCWP gen-

erating similar values and trading the highest skill out to

120min. At later forecast times, the difference in CSI

between the worst and best performing model is less

than 0.015.

6. Conclusions

Assimilating satellite data into the WoFS clearly

benefited high-impact weather forecasts compared to

only assimilating radar data, which is consistent with

previous findings (e.g., Jones et al. 2016). There were

important forecast differences depending on which

FIG. 14. As in Fig. 4, but for 3 h reflectivity forecasts valid at 0200 UTC 20 Jul.
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satellite data type was assimilated. Assimilating CWP

generally improved forecasts of reflectivity and rotation

compared to radar-only experiments, but has smaller

impacts to the near-storm environment and upper-level

cloud forecasts. For the May cases, the number of clear-

sky radiance observations was relatively small limiting

their impact in most instances. Many more clear-sky

radiance observations were assimilated on 19 July,

leading to larger improvements to forecast skill.

Assimilating all-sky radiances generally had large

impacts on the forecasts compared against radar-only or

retrieval assimilation techniques. Radiance assimilation

generally improved convective initiation forecasts, as

shown by the 17 and 28 May cases, with secondary im-

provements in the near-storm environment surrounding

ongoing convection. However, some negative aspects to

all-sky radiance assimilation were also observed. The

most significant was an upper-level cloud bias as as-

similating cirrus clouds became too expansive and too

thick. This led to negative impacts to the thermody-

namic environment resulting in a degradation of fore-

casts later in some cases. Qualitatively, the retrieval

method combined with clear-sky radiances generated

the best forecast skill of high-impact weather prediction

for all object types except BT69, but this version of the

system also benefited from several years of tuning.

FIG. 15. As in Fig. 5, but for 3 h probability of winds gusts greater than 50 kt forecasts valid during 2300–0200 UTC

19–20 Jul.
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This research only represents a first step at all-sky

radiance assimilation into the WoFS. Many refinements

will be required so that the advantages of all-sky radi-

ances DA can be retained while removing the unwanted

side effects produced in the cases studied here. Ongoing

research will focus on several key aspects of the system.

Further enhancements to the cloud microphysics scheme

are likely to better handle a rapid update of nonconvective

clouds. Also, improvements to the model itself and eval-

uations of optimal horizontal and vertical resolutions for

satellite data assimilation are being performed. Research

on adaptive thinning of radar and satellite data are also

under way as it is likely that the amount of data from each

sensor currently being assimilated is not optimal. Future

versions of the WoFS will utilize methods that compare

observations with ensemble spread and to each other to

FIG. 16. As in Fig. 6, but for 3 h ensemble mean BT69 forecasts valid at 0200 UTC 20 Jul.
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FIG. 17. Performance diagrams for 1, 2, and 3 h forecasts of reflectivity, rotation, BT69, and BT112 objects generated from all 3-h

forecasts generated during the 1900–0300 UTC time period for the 17 May case. Large dots represent ensemble mean skill and small dots

represent individual member skill and colors represent different experiments. Dots located in the upper right of each panel have the

highest skill and those in the lower left have the lowest.
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FIG. 18. As in Fig. 17, but for 22 May.

MAY 2020 JONE S ET AL . 1853

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/5/1829/4928277/m
w

rd190379.pdf by N
O

AA C
entral Library user on 11 August 2020



FIG. 19. As in Fig. 17, but for 28 May.
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FIG. 20. As in Fig. 17, but for 19 Jul.
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determine which observations will be most effective to

assimilate. Observations that contain duplicate and/or

conflicting information will not be assimilated. Future

systems are also expected to use a cloud classification al-

gorithm to define the observation error, data density, and

localization radius to apply to various radiance and/or

CWP observations prior to assimilation. Currently, all

cloud types are treated equally and the results shown here

clearly indicate that the characteristics of cirrus clouds,

low-level clouds, and those associated with convective

initiation should be assessed in a rigorous manner.

Combined, these enhancements should resolve some of

the biases observed in this research.
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